扫描电镜在金属材料失效分析领域的应用
发布时间 :2022-09-02 16:13:42  浏览量:358

1.jpg


金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。一般分为黑色金属和有色金属两种。黑色金属包括铁、铬、锰等[1]。其中钢铁是基本的结构材料,称为“工业的骨骼”。迄今为止,钢铁在工业原材料构成中仍占主导地位。众多钢铁企业及科研院所利用扫描电镜得天独厚的优势来解决生产时遇到的问题,并协助科研开发新产品。扫描电镜搭载相应的附件已成为钢铁冶金行业进行研究和生产过程中发现问题的有利手段。随着扫描电镜分辨率及自动化程度的提高,扫描电镜在材料分析表征方面的应用愈发广泛[2]


失效分析是近些年由军工企业向科研学者及企业所普及的一门新学科[3],金属零部件失效轻则会导致工件性能退化,重则会导致人生安全事故,通过失效分析定位失效原因,提出有效改进措施是保证工程安全运行必不可少的一步,因此,充分利用扫描电镜的优势将为金属材料行业的进步做出巨大贡献。



01 电镜观察金属件拉伸断口     


断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。通过断口的形态分析研究一些导致材料发生断裂的基本问题,如断裂起因、断裂性质、断裂方式等。如果要深入研究材料的断裂机理,通常要对断口表面的微区成分进行分析,断口分析现已成为对金属构件进行失效分析的重要手段。


222.png

333.png

444.png

图1 国仪量子扫描电镜SEM3100拉伸断口形貌图


根据断裂的性质,断口大致可分为脆性断口塑性断口。脆性断口的断裂面通常与拉伸应力垂直,脆性断口从宏观来看,由光泽的结晶亮面组成;塑性断口从宏观来看,通常断口上有细小凹凸,呈纤维状。


断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径,但如果要对断裂源附近进行细致研究,分析断裂原因和断裂机制,必须进行微观观察,且因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的景深,尽可能宽的放大倍数范围和高的分辨率。综合这些需求,扫描电镜在断口分析领域得到广泛的应用。图1三个拉伸断口样品,通过低倍宏观观察及高倍显微组织观察,样品A断口呈河流花样(如图A)为典型脆性断口特征;样品B宏观无纤维状形貌(如图B),微观组织无韧窝出现,为脆性断口;样品C宏观断口由光泽的刻面构成,故以上拉伸断口均为脆性断口。



02 电镜观察钢铁夹杂物     


钢的性能主要取决于钢的化学成分和组织。钢中夹杂物主要以非金属化合物形态存在,如氧化物、硫化物、氮化物等,造成钢的组织不均匀,而且它们的几何形状、化学成分、物理因素等不仅使钢的冷热加工性能降低,还会影响材料的力学性能[4]。非金属夹杂物的成分、数量、形状和分布等对钢的强度、塑性、韧性、抗疲劳、耐腐蚀等性能有极大的影响,因此,非金属夹杂物是钢铁材料金相检验中不可缺少的项目。通过研究钢中夹杂物的行为,采用相应技术防止钢中夹杂物进一步形成和减少钢液中已存在的夹杂物,对生产高纯净钢以及提高钢的性能具有十分重要的意义。


555.png

666.png

777.png

图2 夹杂物形貌图

888.png

图3 TiN·Al2O3复合类夹杂能谱面分析图


图2、图3所示夹杂物分析案例中,通过使用扫描电镜观察夹杂物,配合能谱分析电工纯铁所含夹杂物成分,可知纯铁内部所含夹杂物种类为氧化物类、氮化物类以及复合类夹杂。


扫描电镜SEM3100自带的分析软件具有强大的功能,可以直接对样品测量或直接在图片上进行距离、长度的测量,例如通过测量上图所示案例中电工纯铁夹杂物的长度,可知Al2O3夹杂物平均尺寸约为3 μm,TiN及AlN尺寸均在5 μm以内,复合类夹杂尺寸不超过8 μm;这些细小的夹杂在电工纯铁内对磁畴起到钉扎的作用,会影响最终的磁性能。


氧化物类夹杂Al2O3来源可能为炼钢的脱氧产物和连铸过程的二次氧化物,在钢铁材料中的形态多为球形,少部分为不规则形状。AlN在钢铁材料中的形态通常呈细长条状;TiN在钢铁中的形态通常呈四边形,夹杂物的形态与其组分以及在钢液内所发生一系列的物理化学反应有关,观察夹杂物时不仅要观察夹杂物的形态及成分,还要关注夹杂物的尺寸大小及分布,需要多方面统计,从而综合评判夹杂物水平。在对单个夹杂物进行观察分析时扫描电镜具有一定的优势,例如夹杂物导致工件开裂进行失效分析,通常在开裂源头处会发现大颗粒夹杂,此时对夹杂物进行尺寸、成分、数量以及形状等研究具有重要意义,通过分析可以定位工件的失效原因



03 扫描电镜对钢铁材料中有害析出相的检测方法     


析出相是指饱和固溶体温度降低时析出的相,或固溶处理后得到的过饱和固溶体在时效时析出的相,相对的时效过程是一个固态相变的过程,是第二相粒子从过饱和固溶体中沉淀脱溶并且形核长大的过程。析出相在钢中具有十分重要的作用,其对钢的强度、韧性、塑性、疲劳性能等许多重要的物理化学性能均具有重要影响。合理控制钢铁析出相能够强化钢铁性能,如果热处理温度及时间控制不当,会引起金属性能急剧下降,如脆断、易腐蚀等。


999.jpg

1000.jpg

图4 国仪量子扫描电镜SEM3100电工纯铁析出相背散图


在一定的加速电压下,由于背散射电子的产额基本随试样原子序数的增高而增加,所以可以利用背散射电子作为成像信号,显示原子序数衬度像,在一定范围内可以观察试样表面的化学组分分布情况。铅原子序数为82,在背散模式下Pb的背散射电子产额很高,所以图像中Pb呈亮白色。


Pb在钢铁材料中的危害有以下几种,因为Pb和Fe不生成固溶体,在冶炼过程中难以去除,且易在晶界处发生偏聚,形成低熔点的共晶体削弱晶界结合力,使材料的热加工性能下降。电工纯铁中的铅析出可能来源是炼铁原料中含有的Pb,以及冶炼时添加合金元素所含有的微量Pb;如果特殊用途使用,不排除在冶炼过程中加入的可能,目的是改善切削加工性能。



04 结语     


扫描电镜作为一种显微分析工具,可以对金属材料进行多种形式的观察,可以对各类缺陷进行详细的分析、金属材料失效的原因进行综合定位分析,随着扫描电镜功能的不断完善和提升,扫描电镜能够完成的工作也越来越多,不仅为改善材料性能的研究提供了可靠依据,同时也在生产工艺控制、新产品设计和研究等方面发挥了重要作用。

1100.png

01   分辨率3 nm @ 30kV, SE

02   放大倍率:1 x~300,000 x

03   图像保存:最大像素,6144 x 4096

04   加速电压:1 kV ~ 30 kV

05   最大样品尺寸:直径370 mm,高73 mm



参考文献:

[1] 张鋆川. 金属材料检测常见问题及解决措施[J]. 数字化用户, 2018, 24(052):67.

[2] 郭立波,李朋,武强,等. 扫描电镜及能谱分析在钢铁冶金中的应用[J]. 物理测试,2018,36(1):30-36.

[3] 陈南平,顾守仁,沈万慈等.机械零件失效分析[M].北京:清华大学出版社,2008,15-17.

[4] 程晓舫,胡宇.钢中夹杂物分析方法探讨[J].金属制品,2006, 032(004):52-54.